LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2018
MT 1501 - GRAPHS, DIFF. EQU., MATRICES \& FOURIER SERIES

Date: 25-10-2018
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

$\underline{\text { PART - A }}$

Answer ALL questions.
(10×2 = 20 marks)

1. Find the domain and range of $f(x)=x^{2}$.
2. Define odd and even functions.
3. Write the normal equations of $\mathrm{y}=\mathrm{ax}+\mathrm{b}$.
4. Find the Fourier cofffecient a_{n} for the function $f(x)=e^{x}$ in $(-\pi, \pi)$.
5. State the principle of least squares.
6. Define symmetric and skew-symmetric matrices.
7. Solve $y_{n+2}-8 y_{n+1}+15 y_{n}=0$.
8. State Cayley - Hamilton theorem.
9. Find order of the differential equation $u_{x+2}-3 u_{x+1}+5 u_{x}=x^{2}$.
10. Find the eigen values of $\mathrm{A}=\left(\begin{array}{lll}a & h & g \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$

PART - B

Answer any FIVE questions.
(5 X 8 = 40 marks)
11. The cost function of a firm is $C=300 x-10 x^{2}+\frac{1}{3} x^{3}$. Calculate (i) output at which average cost is minimum and the minimal average cost.
12. The weight of a calf at weekly intervals is given. Fit a straight line and calculate the average rate of growth per week:

Age	1	2	3	4	5	6	7	8	9	10
Weight	52.5	58.7	65.0	70.2	75.4	81.1	87.2	95.5	102.2	108.4

13. Reduce to linear form $y=a e^{b x}$.
14. Eliminate the constants from $y_{n}=A 2^{n}+B 3^{n}$ and find the differential equation of the lowest order.
15. Find the eigen vectors of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2\end{array}\right)$.
16. Verify Cayley Hamilton theorem for the matrix $\mathrm{A}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right)$.
17. Show that for all values of x on $(-\pi, \pi), \frac{x}{2}=\sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}+\ldots \infty$.
18. Solve $y_{x+2}-6 y_{x+1}+8 y_{x}=4^{x}$.

PART - C

Answer any TWO questions.

19. a) If the demand function $P=550-3 x-6 x^{2}$ where x is the quantity demanded and P is the price per unit, find the average revenue and marginal revenue.
b) Use the method of least squares to fit the following data to a straight line:

x	0	5	10	15	20
y	7	11	16	20	26

20. a) Find the half - range cosine series for $f(x)=x$ in $(0, \pi)$.
b) Solve $y_{n+2}+y_{n+1}-56 y_{n}=2^{n}\left(n^{2}-3\right)$.
21. Diagonalise the matrix: $\mathrm{A}=\left(\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right)$.
22. Find the Fourier series expansion of $f(x)=\pi^{2}-x^{2}$ in $(-\pi, \pi)$ and hence find an expansion for $\frac{\pi^{2}}{12}$.
